bdt

B

bigbang195

[TEX]VT \le (1-a+1-b)^2(1-c)=(1+c)^2(1-c)=(1+c)(1-c^2)=(a+b+2c)(1-c^2) \le(a+b+2c)[/TEX]do [TEX](1-c^2)\le 1[/TEX]
 
R

rua_it

cho a,b,c >0 và a+b+c=1
CMR
4(1-a)(1-b)(1-c) \leq a+b+2c(1)
Vì [tex]a+b+c = 1 \Rightarrow a,b,c \in\ (0;1][/tex]
Đặt [tex]\left{\begin{x=1-a \geq 0}\\{y=1-b \geq 0}\\{z=1-c \geq 0}[/tex]
[tex]\Rightarrow x+y+z=3-(a+b+c)=2[/tex]
[tex]\Rightarrow (1) \Leftrightarrow (1-x)+(1-y)+2(1-z) \geq 4xyz[/tex]
[tex]\Leftrightarrow 4-x-y-2z \geq 4xyz[/tex]
[tex]\Leftrightarrow 4-2(x+y+z)+(x+y) \geq 4xyz[/tex]
[tex]\Leftrightarrow (x+y) \geq 4xyz(*)[/tex]
Mà Cauchy \Rightarrow[tex] 4(x+y)=(x+y)(x+y+z)^2 \geq 4(x+y)^2.z \geq 4xyz[/tex]
[tex]\Rightarrow (*) [/tex] đúng \Rightarrow (1) đúng(dpcm)
 
Top Bottom