giúp mk lm baì này vs, bài 4,6 nhé!
View attachment 146415
[tex]5a^{2} + 2ab + 2b^2 = (2a+b)^2+(a-b)^2\geq (2a+b)^2[/tex] [tex]=> \sqrt{5a^2+2ab+2b^2}\geq 2a+b[/tex]
[tex]=>\frac{1}{\sqrt{5a^2+2ab+2b^2}}\leq \frac{1}{2a+b}\leq \frac{1}{9}(\frac{2}{a}+\frac{1}{b})[/tex]
[tex]=> P\leq \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\leq \frac{1}{3}\sqrt{3(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})}=\frac{1}{3}\sqrt{3}=\frac{\sqrt{3}}{3}[/tex]
Dấu ''='' xảy ra <=> [tex]a=b=c=\sqrt{3}[/tex]