Toán 9 bdt

iiarareum

Học sinh chăm học
Thành viên
13 Tháng chín 2018
444
483
76
19
Vĩnh Phúc
THCS TT Hoa Sơn
giúp mk lm baì này vs, bài 4,6 nhé!
View attachment 146415
[tex]5a^{2} + 2ab + 2b^2 = (2a+b)^2+(a-b)^2\geq (2a+b)^2[/tex] [tex]=> \sqrt{5a^2+2ab+2b^2}\geq 2a+b[/tex]
[tex]=>\frac{1}{\sqrt{5a^2+2ab+2b^2}}\leq \frac{1}{2a+b}\leq \frac{1}{9}(\frac{2}{a}+\frac{1}{b})[/tex]
[tex]=> P\leq \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\leq \frac{1}{3}\sqrt{3(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})}=\frac{1}{3}\sqrt{3}=\frac{\sqrt{3}}{3}[/tex]
Dấu ''='' xảy ra <=> [tex]a=b=c=\sqrt{3}[/tex]
 
Top Bottom