Bdt

V

vodichhocmai

tính tổng:
[TEX] S=1/(2!*2007!)+1/(4!*2005!)+1/(6!*2003!)+...+1/(2006!*3!)+1/(2008!*1!)[/TEX]

[TEX]\blue 2009!S=\frac{2009!}{2!2007!} +\frac{2009!}{4!2005!} +\frac{2009!}{6!2003!} +......+\frac{2009!}{2006!3!} +\frac{2009!}{2009!1!} [/TEX]

[TEX]\blue 2009!S= C_{2009}^2+C_{2009}^{4}+C_{2009}^6+...+C_{2009}^{2006}+C_{2009}^{2008}\ \ (!)[/TEX]

Ta lại có :

[TEX]\blue \left{(1-1)^{2009}=\sum_{k=0}^{2009} (-1)^kC_{2009}^k\ \ (1)\\ (1+1)^{2009}=\sum_{k=0}^{2009} C_{2009}^k\ \ (2)[/TEX]

[TEX]\blue \frac{(1)+(2)}{2}-1=C_{2009}^2+C_{2009}^{4}+ C_{2009}^6+...+C_{2009}^{2006}+C_{2009}^{2008}=2^{2008}\ \(!!)[/TEX]

[TEX]\blue (!)&(!!)\Rightarrow S=\frac{2^{2008}-1}{2009!}[/TEX]

[TEX]\red Done!!![/TEX]
 
Last edited by a moderator:
C

ctsp_a1k40sp

[TEX]\blue 2009!S=\frac{2009!}{2!2007!} +\frac{2009!}{4!2005!} +\frac{2009!}{6!2003!} +......+\frac{2009!}{2006!3!} +\frac{2009!}{2009!1!} [/TEX]

[TEX]\blue 2009!S= C_{2009}^2+C_{2009}^{4}+C_{2009}^6+...+C_{2009}^{2006}+C_{2009}^{2008}\ \ (!)[/TEX]

Ta lại có :

[TEX]\blue \left{(1-1)^{2009}=\sum_{k=0}^{2009} (-1)^kC_{2009}^k\ \ (1)\\ (1+1)^{2009}=\sum_{k=0}^{2009} C_{2009}^k\ \ (2)[/TEX]

[TEX]\blue \frac{(1)+(2)}{2}=C_{2009}^2+C_{2009}^{4}+ C_{2009}^6+...+C_{2009}^{2006}+C_{2009}^{2008}=2^{2008}\ \(!!)[/TEX]

[TEX]\blue (!)&(!!)\Rightarrow S=\frac{2^{2008}}{2009!}[/TEX]

[TEX]\red Done!!![/TEX]
Nhầm lẫn phần cuối

Chú ý [TEX]C_{0}^{2009}=1[/TEX]
Kết quả
[TEX]S=\frac{2^{2008}-1}{2009!}[/TEX]
 
Top Bottom