BĐT trong hình

E

eye_smile

Ta có: A= ($S_{AHB}$+ $S_{AHC}$+ $S_{BHC}$)($\dfrac{1}{S_{AHB}}$+ $\dfrac{1}{S_{AHC}}$+ $\dfrac{1}{S_{BHC}}$ ) \geq $9$
Có: $A= \dfrac{S_{ABC}}{S_{AHB}­}+\dfrac{S_{ABC}}{S_{AHC}­}+\dfrac{S_{ABC}}{S_{BHC}}$
$=1+\dfrac{S_{ABC}-S_{AHB}}{S_{AHB}}+1+\dfrac{S_{ABC}-S_{AHC}­}{S_{AHC}}+1+\dfrac{S_{ABC}-S_{BHC}­}{S_{BHC}}$
$=3+\dfrac{\dfrac{1}{2}AB.CC'-\dfrac{1}{2}AB.HC'}{\dfrac{1}{2}AB.HC'}+ \dfrac{\dfrac{1}{2}BB'.AC-\dfrac{1}{2}B'H.AC}{\dfrac{1}{2}B'H.AC}+ \dfrac{\dfrac{1}{2}AA'.BC-\dfrac{1}{2}HA'.BC}{\dfrac{1}{2}HA'.BC}$
$=3+\dfrac{HA}{HA'}+\dfrac{HB}{HB'}+\dfrac{HC}{HC'}$ \geq $9$
\Rightarrow đpcm
 
Last edited by a moderator:
C

congchuaanhsang

Đặt $S_{AHB}=a$ ; $S_{AHC}=b$ ; $S_{BHC}=c$

Theo công thức diện tích dễ dàng cm được

$\dfrac{HA}{HA'}+\dfrac{HB}{HB'}+\dfrac{HC}{HC'}$=$\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}$

=$(\dfrac{a}{b}+\dfrac{b}{a})+(\dfrac{a}{c}+\dfrac{c}{a})+(\dfrac{b}{c}+\dfrac{c}{b})$

\geq6 (Cauchy)
 
Top Bottom