BDT thi dai hoc

T

tuyn

Ta có:
[TEX] \sqrt{8a^3+1}= \sqrt{(2a+1)(4a^2-2a+1)} \leq \frac{2a+1+4a^2-2a+1}{2}=2a^2+1[/TEX]
Tương tự với 2 căn với b,c
[TEX]\Rightarrow VT \geq \frac{a}{2c^2+1}+ \frac{b}{2a^2+1}+ \frac{c}{2a^2+1}[/TEX]

[TEX]=a- \frac{2ac^2}{2c^2+1}+b- \frac{2ba^2}{2a^2+1}+c- \frac{2cb^2}{2b^2+1}[/TEX]

[TEX]=a+b+c-( \frac{2ac^2}{2c^2+1}+ \frac{2ba^2}{2a^2+1}+ \frac{2cb^2}{2b^2+1})[/TEX]

Ta có:
[TEX]2c^2+1=c^2+c^2+1 \geq 3c \sqrt[3]{c}, 2b^2+1 \geq 3b \sqrt[3]{b}, 2a^2+1 \geq 3a \sqrt[3]{c}[/TEX]

[TEX]\Rightarrow \frac{2ac^2}{2c^2+1}+ \frac{2ba^2}{2a^2+1}+ \frac{2cb^2}{2b^2+1} \leq \frac{2}{3}a \sqrt[3]{c^2}+ \frac{2}{3}b \sqrt[3]{a^2}+ \frac{2}{3}c \sqrt[3]{b^2}[/TEX]
Đến đây lại bí rồi.Để tối về mình nghĩ tiếp
 
Top Bottom