Cho a,b,c >0 sao cho :[tex]\frac{1}{a}+\frac{1}{c}=\frac{2}{b}[/tex] .CMR:
[tex]\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\geq 4[/tex]
$b=\frac{2ac}{a+c}$
$\dfrac{a+b}{2a-b}=\dfrac{a(a+3c)(a+c)}{(a+c)(2a^2)}=\dfrac{a+3c}{2a}$
$\dfrac{b+c}{2c-b}=\dfrac{c+3a}{2c}$
=> $\dfrac{a+3c}{2a}+\dfrac{c+3a}{2c}=\dfrac{2ac+3(a^2+c^2)}{2ac}$
$AM-GM$,ta có:$a^2+c^2 \ge 2ac$
$\dfrac{2ac+3(a^2+c^2)}{2ac} \ge \dfrac{8ac}{2ac}=4$