Áp dụng bất đẳng thức Cauchy Schwarz có 3 số, ta có
$\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{1^2}{b} \geq \dfrac{(1+1+1)^2}{a+b+b} = \dfrac{9}{a+2b}$
$\dfrac{1^2}{b}+\dfrac{1^2}{c}+\dfrac{1^2}{c} \geq \dfrac{(1+1+1)^2}{b+c+c} = \dfrac{9}{b+2c}$
$\dfrac{1^2}{c}+\dfrac{1^2}{a}+\dfrac{1^2}{a} \geq \dfrac{(1+1+1)^2}{c+a+a} = \dfrac{9}{c+2a}$
Cộng vế với vế, ta có
$\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c} \geq \dfrac{9}{a+2b}+\dfrac{9}{b+2c}+\dfrac{9}{c+2a}$
$\Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \geq 3(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a})$