BĐT hinh hoc

K

kisihoangtoc

AMMA1=SAMBSMBA1=SAMCSMCA1=SAMB+SAMCSBMC\frac{AM}{MA_1}=\frac{S_{AMB}}{S_{MBA_1}}=\frac{S_{AMC}}{S_{MCA_1}}=\frac{S_{AMB}+S_{AMC}}{S_{BMC}}
Tương tự BMMB1=SAMB+SBMCSAMC\frac{BM}{MB_1}=\frac{S_{AMB}+S_{BMC}}{S_{AMC}}
CMMC1=SAMC+SBMCSAMB\frac{CM}{MC_1}=\frac{S_{AMC}+S_{BMC}}{S_{AMB}}
AMMA1+BMMB1+CMMC1\frac{AM}{MA_1}+\frac{BM}{MB_1}+\frac{CM}{MC_1}
=SAMB+SAMCSBMC+SAMC+SBMCSAMB+SAMC+SBMCSAMB=\frac{S_{AMB}+S_{AMC}}{S_{BMC}}+\frac{S_{AMC}+S_{BMC}}{S_{AMB}}+\frac{S_{AMC}+S_{BMC}}{S_{AMB}}
=(SAMB+SBMC+SAMC)(1SAMB+1SBMC+1SAMC)3=(S_{AMB}+S_{BMC}+S_{AMC})(\frac{1}{S_{AMB}}+ \frac{1}{S_{BMC}}+ \frac{1}{S_{AMC}})-3
\geq 93=69-3=6


AMMA1.BMMB1.CMMC1\frac{AM}{MA_1}.\frac{BM}{MB_1}.\frac{CM}{MC_1}
=(SAMB+SBMC)(SBMC+SAMC)(SAMC+SAMB)SAMB.SBMC.SAMC=\frac{(S_{AMB}+S_{BMC})(S_{BMC}+S_{AMC})(S_{AMC}+S_{AMB})}{S_{AMB}.S_{BMC}.S_{AMC}}
\geq2SAMB.SBMC.2SBMC.SAMC.2SAMC.SAMBSAMB.SBMC.SAMC\frac{2\sqrt{S_{AMB}.S_{BMC}}.2\sqrt{S_{BMC}.S_{AMC}}.2\sqrt{S_{AMC}.S_{AMB}}}{S_{AMB}.S_{BMC}.S_{AMC}}
=8SAMB.SBMC.SAMCSAMB.SBMC.SAMC=8=\frac{8S_{AMB}.S_{BMC}.S_{AMC}}{S_{AMB}.S_{BMC}.S_{AMC}}=8
 
Last edited by a moderator:
Top Bottom