BDT hay

V

vy000

Ta có: $(x+y+z+t)^2 \\ = (x+z)^2+(y+t)^2+2(x+z)(y+t) \\ \ge \dfrac12(x+y+z+t)^2+2(xy+yz+zt+tx) $

\Leftrightarrow $\dfrac12(x+y+z+t)^2 \ge 2(xy+yz+zt+tx)$
\Leftrightarrow $xy+yz+zt+tx \le 4$

Tương tự:
$\dfrac12(xy+yz+zt+tx)^2 \ge 2(xy^2z+yz^2t+zt^2x+x^2yt)$

\Rightarrow $8 \ge 2(xy^2z+yz^2t+zt^2x+x^2yt)$

\Leftrightarrow $4 \ge xy^2z+yz^2t+zt^2x+x^2yt$

\Leftrightarrow $(x+xy^2z)+(y+yz^2t)+(z+zt^2x)+(t+x^2yt) \le 8$

\Leftrightarrow $\dfrac{16}{(x+xy^2z)+(y+yz^2t)+(z+zt^2x)+(t+x^2yt)} \ge 2$


$P=\dfrac{x^2}{x+xy^2z}+\dfrac{y^2}{y+yz^2t}+ \dfrac{z^2}{z+zt^2x}+\dfrac{t^2}{t+tx^2y} \ge \dfrac{(x+y+z+t)^2}{(x+xy^2z)+(y+yz^2t)+(z+zt^2x)+(t+x^2yt)} \ge 2$
 
L

longbien97

cac ban xem minh lam the nay co dc ko nha

[TEX]P=x-\frac{xy^2z}{1+y^2z}+......................[/TEX]
P\geq[TEX]x-\frac{xy^2z}{2y\sqrt[]{z}}+............................[/TEX]
\geq[TEX]x-\frac{xy\sqrt[]{z}}{2}+....................[/TEX]
\geq[TEX]x-\frac{y\sqrt[]{x.xz}}{2}+........................[/TEX]
\geq[TEX]x-y\frac{\frac{x+xz}{2}}{2}+................[/TEX]
cuoi cung no ra nhu the nay
P\geq[TEX]x+y+z+t-\frac{1}{4}(xy+yz+zt+tx)-\frac{1}{4}(xyz+zyt+ztx+txy)[/TEX]
\geq[TEX]x+y+z+t-\frac{1}{4}\frac{(x+y+z+t)^2}{4}-\frac{1}{4}...........[/TEX]
toi cho nay minh ko biet phan tich xyz+zyt+ztx+txy theo x+y+z+t ???
ban nao biet thi chi giup minh nha minh thanks
 
V

vodichhocmai

toi cho nay minh ko biet phan tich xyz+zyt+ztx+txy theo x+y+z+t ???
ban nao biet thi chi giup minh nha minh thanks

[TEX] xyz+zyt+ztx+txy =yz(x+t)+tx(z+y) \le \frac{(y+z)^2}{4}(x+t)+\frac{(t+z)^2}{4}(z+y) =\frac{(y+z)(x+t)\(x+y+z+t\)}{4} \le \frac{(x+y+z+t)^3}{16}[/TEX]
 
Top Bottom