BDT cần chứng minh

Q

quanghao98

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

mọi người giúp mình chứng minh một số BDT sau nhé:

1)cho a,b,c là các số thực dương,chứng minh rằng:
$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}$ \geq $\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}$

2)cho a,b,c là các số thực dương,chứng minh rằng:
$\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}$ \geq 1
 
H

harrypham

2) Áp dụng bất đẳng thức Cauchy-Schwarz ta có $$\dfrac{a}{b+2c}+ \dfrac{b}{c+2a}+ \dfrac{c}{a+2b} = \dfrac{a^2}{ab+2ac}+ \dfrac{b^2}{bc+2ab}+ \dfrac{c^2}{ac+2bc} \ge \dfrac{(a+b+c)^2}{3(ab+bc+ca)} \ge 1$$
Dấu đẳng thức xảy ra khi và chỉ khi $a=b=c.$
 
C

conga222222

câu 1:
$\eqalign{
& co\;bdt\;sau: \cr
& {1 \over {{a_0}}} + {1 \over {{a_1}}} + {1 \over {{a_2}}} + {1 \over {{a_3}}} + {1 \over {{a_4}}} + {1 \over {{a_5}}} + {1 \over {{a_6}}} \ge {{49} \over {{a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5} + {a_6}}} \cr
& cm:\;ap\;dung\;bat\;dang\;thuc\;bunhiacopski\;co \cr
& \left( {{1 \over {{a_0}}} + {1 \over {{a_1}}} + {1 \over {{a_2}}} + {1 \over {{a_3}}} + {1 \over {{a_4}}} + {1 \over {{a_5}}} + {1 \over {{a_6}}}} \right)\left( {{a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5} + a} \right) \ge {7^2} = 49 \cr
& \leftrightarrow {1 \over {{a_0}}} + {1 \over {{a_1}}} + {1 \over {{a_2}}} + {1 \over {{a_3}}} + {1 \over {{a_4}}} + {1 \over {{a_5}}} + {1 \over {{a_6}}} \ge {{49} \over {{a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5} + {a_6}}} \cr
& dau = \leftrightarrow {a_0} = {a_1} = ... = {a_6} \cr
& ap\;dung\;bat\;dang\;thuc\;tren\;ta\;co: \cr
& {4 \over {a + 3b}} + {2 \over {b + 3c}} + {1 \over {c + 3a}} = {1 \over {a + 3b}} + {1 \over {a + 3b}} + {1 \over {a + 3b}} + {1 \over {a + 3b}} + {1 \over {b + 3c}} + {1 \over {b + 3c}} + {1 \over {c + 3a}} \ge {{49} \over {7a + 14b + 7c}} = {7 \over {a + 2b + c}} \cr
& tuong\;tu: \cr
& {1 \over {a + 3b}} + {4 \over {b + 3c}} + {2 \over {c + 3a}} \ge {7 \over {a + b + 2c}} \cr
& {2 \over {a + 3b}} + {1 \over {b + 3c}} + {4 \over {c + 3a}} \ge {7 \over {2a + b + c}} \cr
& \to {7 \over {a + 3b}} + {7 \over {b + 3c}} + {7 \over {c + 3a}} \ge {7 \over {a + 2b + c}} + {7 \over {a + b + 2c}} + {7 \over {2a + b + c}} \cr
& dau = \leftrightarrow a = b = c \cr} $
 
Top Bottom