Bài này làm ntn ạ?
Cho a,b,c dương và abc=1
Cmr: 1/a^3(b+c) + 1/b^3(a+c) +1/c^3(a+b) >= 3/2
A = 1/ [a³(b+c)] +1/ [b³(a+c)] +1/ [ c³(a+b)]
Ta có 1 / [a³(b+c)] = b²c²/[a(b+c)] , do abc = 1 ==> 1/a² = b²c².
biến đổi tương tự cho các biểu thức còn lại và đặt ab = x, bc = y, ac = z
Suy ra A = x²/(y+z) + y²/(x+z) + z²/(x+y)
áp dụng buniacopski ta có A [ √(y+z)² + √(x+z)² + √(x+y)² ] ≥ (x+y+z)²
==> A ≥ 1/2*(x+y+z)²/(x+y+z) = 1/2( x+y+z) ≥ 3/2 √xyz = 3/2 √(abc)² = 3/2 abc =3/2 (DPCM)
*nguồn: mạng^^