mấy best giải nhanh giúp em câu 5 vs, đang gấp lắm
View attachment 45299
$P=\sum \frac{x^{2}}{yz+\sqrt{1+x^{3}}}$
$=\sum \frac{x^{2}}{yz+\sqrt{(1+x)(x^{2}-x+1)}}$
$\geq \sum \frac{x^{2}}{yz+\frac{1+x+x^{2}-x+1}{2}}$ (BĐT AM-GM)
$=\sum \frac{x^{2}}{yx+\frac{x^{2}+2}{2}}$
$=\sum \frac{2x^{2}}{x^{2}+2yz+2}$
$\geq \frac{2(x+y+z)^{2}}{(x+y+z)^{2}+6}$ (BĐT Svacxo)
$\geq \frac{2(x+y+z)^{2}}{(x+y+z)^{2}+x+y+z}$ ( vì x+y+z$\geq$6)
$=\frac{2(x+y+z)}{x+y+z+1}$
$=\frac{2(x+y+z+1)}{x+y+z+1}-\frac{2}{x+y+z+1}$ ( vì x+y+z$\geq$6)
$\geq 2-\frac{2}{7}=\frac{12}{7}$
Dấu "=" xảy ra <=> x=y=z=2