BBT loga

V

vodichhocmai

mọi người giúp em câu này vs
1. [TEX] log_3(x^2 + x +1) - log_3(x) > 2x -x^2 [/TEX]


[TEX] x^2 + x +1\ge 2x+x [/TEX]

[TEX] log_3(x^2 + x +1) - log_3(x) \ge log_3 (3x)-log_3(x) [/TEX]

[TEX]\righ log_3(x^2 + x +1) - log_3(x) \ge 1[/TEX]

Ta luôn có :

[TEX]y=2x-x^2 \le 1[/TEX]

[TEX]\righ log_3(x^2 + x +1) - log_3(x) \ge 2x -x^2 [/TEX]

[TEX](ycbt)\Leftrightarrow log_3(x^2 + x +1) - log_3(x) > 2x -x^2\Leftrightarrow\left{x>0\\x\neq 1[/TEX]
 
V

vodichhocmai

mọi người giúp em câu này vs
1. [TEX]log_3(x^2 + x +1) - log_3(x) > 2x -x^2[/TEX]

Trình bài thế nầy đẹp hơn :

[TEX]DK: x>0[/TEX]

[TEX](bpt)\Leftrightarrow log_3 \(x+\frac{1}{x}+1\)> 1-(1-x)^2[/TEX].

Ta luôn có [TEX]x>0[/TEX] thì :

[TEX]\left{x+\frac{1}{x}\ge 2\\ 1-(1-x)^2\le 1[/TEX]

[TEX]\righ \left{log_3 \(x+\frac{1}{x}+1\)\ge 1\\ 1-(1-x)^2\le 1 [/TEX]

[TEX]\righ log_3 \(x+\frac{1}{x}+1\)\ge 1-(1-x)^2[/TEX]

[TEX](ycbt) \Leftrightarrow log_3 \(x+\frac{1}{x}+1\)> 1-(1-x)^2[/TEX]

[TEX]\Leftrightarrow \left{x>0\\x\neq 1[/TEX]
 
Top Bottom