[tex]\frac{x^2-5x+5}{\sqrt{x-2}}+\sqrt{x-2} > \frac{2x^2-6x-5}{\sqrt{x-2}} \Leftrightarrow \sqrt{x-2} > \frac{x^2-x-10}{\sqrt{x-2}} \Leftrightarrow x-2 > x^2-x-10 \Leftrightarrow x^2-2x-8 < 0 \Rightarrow (x+2)(x-4) < 0 \Rightarrow -2 < x < 4[/tex]
Mà [tex]x > 2 \Rightarrow 2 < x < 4[/tex]
[tex]3x+1+2\sqrt{2x^2+5x+3}\leq 2(\sqrt{x+1}+\sqrt{2x+3}) \Leftrightarrow x+1+2\sqrt{(x+1)(2x+3)}+2x+3-3-2(\sqrt{x+1}+\sqrt{2x+3}) \leq 0 \Leftrightarrow (\sqrt{x+1}+\sqrt{2x+3})^2-2(\sqrt{x+1}+\sqrt{2x+3})-3 \leq 0 \Rightarrow \sqrt{x+1}+\sqrt{2x+3} \leq 3[/tex]