BPT tương đương với: [tex]5(\sqrt{x}+\frac{1}{2\sqrt{x}}) \geq 2(x+\frac{1}{4x}+1)+2\Leftrightarrow 5(\sqrt{x}+\frac{1}{2\sqrt{x}}) \geq 2(\sqrt{x}+\frac{1}{2\sqrt{x}})^2+2[/tex]
Đặt [tex]\sqrt{x}+\frac{1}{2\sqrt{x}} =t> 0 \Rightarrow 5t\geq 2t^2+2\Leftrightarrow (2t-1)(t-2)\leq 0\Leftrightarrow [/tex][tex]\frac{1}{2} \leq t \leq 2[/tex]
Mà [tex]t=\sqrt{x}+\frac{1}{2\sqrt{x}} \geq 2\sqrt{\sqrt{x}.\frac{1}{2\sqrt{x}}}=\sqrt{2} > \frac{1}{2} \Rightarrow \sqrt{x}+\frac{1}{2\sqrt{x}} \leq 2 \Rightarrow 2x+1 \leq 4\sqrt{x} \Rightarrpw 2x-4\sqrt{x}+1 \leq 0 \Rightarrow \frac{2-\sqrt{2}}{2} \leq \sqrt{x} \leq \frac{2+\sqrt{2}}{2} \Rightarrow \frac{3-2\sqrt{2}}{2} \leq x \leq \frac{3+2\sqrt{2}} \Rightarrow x \in [1,2][/tex]