[tex]Cauchy-Schwarz \rightarrow (\sum a^2)^2=[\frac{a^2}{\sqrt{b+c}}.\sqrt{b+c}+\frac{b^2}{\sqrt{c+a}}.\sqrt{c+a}+\frac{c^2}{\sqrt{a+b}}.\sqrt{a+b}]^2 \geq [\sum \frac{a^4}{(b+c)}](b+c+c+a+a+b) \\ =2[\sum a].VT \rightarrow VT \geq \frac{\sum a^3}{2}(dpcm)[/tex]
Tổng quát hóa bài toán:
[tex]n \in\ Z; a,b,c,x,y>0[/tex] [tex]and[/tex] [tex]n \geq 1[/tex]
[tex]\frac{a^n}{bx+cy}+\frac{b^n}{cx+ay}+\frac{c^n}{ax+by} \geq \frac{a^{n-1}+b^{n-1}+c^{n-1}}{x+y}[/tex]