1,
[tex](\sum \frac{a^3b}{1+ab^2})(\sum \frac{1+ab^2}{ab})\geq ^{C-S}(\sum a)^2[/tex]
Có [tex]\sum \frac{1+ab^2}{ab}=\frac{a+b+c+abc(a+b+c)}{abc}=(a+b+c)\frac{abc+1}{abc}[/tex]
[tex]\Rightarrow \sum \frac{a^3b}{1+ab^2}\geq \frac{abc(a+b+c)}{1+abc}[/tex]
2,
Áp dụng BĐT Minkowski
[tex]\Rightarrow \sum \sqrt{x^2+\frac{1}{x^2}}\geq \sqrt{(x+y+z)^2+(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2}\geq^{C-S} \sqrt{(\sum x)^2+(\frac{9}{\sum x})^2}[/tex]
[tex]=\sqrt{81(\sum x)^2+\frac{81}{(\sum x)^2}-80(\sum x)^2}\geq ^{AM-GM}\sqrt{81.2-80}=\sqrt{82}[/tex]