Ta có: [tex]\frac{a^4}{b^3}+\frac{a^4}{b^3}+\frac{a^4}{b^3}+b \geq \frac{4a^3}{b^2}\Rightarrow \frac{3a^4}{b^3} \geq \frac{4a^3}{b^2}-b[/tex]
Tương tự cộng vế theo vế ta có: [tex]3(\frac{a^4}{b^3}+\frac{b^4}{c^3}+\frac{c^4}{a^3}) \geq 4(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2})-(a+b+c)[/tex]
Lại có: [tex]\frac{a^3}{b^2}+b+b \geq 3a \Rightarrow \frac{a^3}{b^2} \geq 3a-2b[/tex]
Cộng vế theo vế ta có [tex]\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2} \geq a+b+c[/tex]
Từ đó [tex]3(\frac{a^4}{b^3}+\frac{b^4}{c^3}+\frac{c^4}{a^3}) \geq 4(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2})-(a+b+c) \geq 3(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2})\Rightarrow \frac{a^4}{b^3}+\frac{b^4}{c^3}+\frac{c^4}{a^3} \geq \frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}[/tex]