Toán 9 Bất đẳng thức

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,653
401
Bắc Ninh
THPT Chuyên Bắc Ninh
View attachment 176655
Mọi người giúp e câu này với ạ , thanks :33
Đặt A=ab3+b2+4=a(b+1)(b2b+1)+b2+3A=\sum \frac{a}{\sqrt{b^3+b^2+4}}=\sum \frac{a}{\sqrt{(b+1)(b^2-b+1)+b^2+3}}
a(b2+2)24+b2+3=a(b2+2)24+b2+2+1=a(b2+22+1)2\ge \sum \frac{a}{\sqrt{\frac{(b^2+2)^2}4+b^2+3}}=\sum \frac{a}{\sqrt{\frac{(b^2+2)^2}4+b^2+2+1}}=\sum \frac{a}{\sqrt{(\frac{b^2+2}2+1)^2}}
=2ab2+4=a2(1b2b2+4)=\sum \frac{2a}{b^2+4}=\sum \frac{a}{2}(1-\frac{b^2}{b^2+4})
a2(1b24b)=a2ab8\ge \sum \frac{a}2 (1-\frac{b^2}{4b}) =\frac{\sum a}2-\frac{\sum ab}8
3ab(a+b+c)23\sum ab \le (a+b+c)^2 do đó ab12-\sum ab \ge -12
A62128=32\Rightarrow A \ge \frac{6}2-\frac{12}8=\frac{3}2
Dấu = xảy ra khi a=b=c=2a=b=c=2



Nếu còn thắc mắc chỗ nào thì bảo mình nhé
 
Last edited:
Top Bottom