Với [TEX]x \geq 1 \Rightarrow M=(1+2+...+100)x-100 \geq \frac{101.100}{2}-100[/TEX]
Với [TEX]x \leq \frac{1}{100} \Rightarrow M = 100-(1+2+...+100)x \geq 100-\frac{100.101}{2}.\frac{1}{100}[/TEX]
Bây giờ ta xét [tex]\frac{1}{k} \leq x < \frac{1}{k+1}[/tex] với [tex]k\in \mathbb{N}, 1 \leq k \leq 100[/tex]
Khi đó ta có: [tex]M=1-x+1-2x+...+1-kx+(k+1)x-1+(k+2)x-1+...+100x-1=k-(100-k)+[-\frac{k(k+1)}{2}+\frac{(k+1+100)(100-k)}{2}]x=[5050-k(k+1)]x+2k-100[/tex]
Xét [TEX]k \leq 70 \Rightarrow 5050-k(k+1) > 0[/TEX]
Khi đó [TEX]M \geq [5050-k(k+1)]. \frac{1}{k}+2k-100=\frac{5050}{k}+k-101 \geq \frac{5050}{70}+70-101[/TEX]
Dấu "=" xảy ra khi [TEX]x=\frac{1}{70}[/TEX]
Xét [TEX]k \geq 71 \Rightarrow 5050-k(k+1) < 0[/TEX]
Khi đó [TEX]M > [5050-k(k+1)]. \frac{1}{k+1}+2k-100=\frac{5050}{k+1}+k-100 \geq \frac{5050}{71}+71-100[/TEX]
Dấu "=" xảy ra khi [TEX]x=\frac{1}{71}[/TEX]
So sánh ta thấy [TEX]minM=\frac{5050}{70}+70-101[/TEX] khi [TEX]x=\frac{1}{70}[/TEX]