Đặt [tex](\sqrt{x};\sqrt{y};\sqrt{z})=(a;b;c)\Rightarrow a^2+b^2+c^2=5[/tex] và [tex]0\leq a;b;c\leq \sqrt{2}[/tex]
[tex]\Rightarrow (a-\sqrt{2})(b-\sqrt{2})+(a-\sqrt{2})(c-\sqrt{2})+(b-\sqrt{2})(c-\sqrt{2})\geq 0[/tex]
[tex]\Leftrightarrow ab+bc+ca-2\sqrt{2}(a+b+c)+6\geq 0[/tex]
[tex]\Leftrightarrow (a+b+c)^2-(a^2+b^2+c^2)-4\sqrt{2}(a+b+c)+12\geq 0[/tex]
[tex]\Leftrightarrow (a+b+c)^2-4\sqrt{2}(a+b+c)+7\geq 0[/tex]
[tex]\Leftrightarrow (a+b+c-2\sqrt{2}+1)(a+b+c-2\sqrt{2}-1)\geq 0[/tex]
[tex]\Leftrightarrow a+b+c-2\sqrt{2}-1\geq 0[/tex]
[tex]\Rightarrow a+b+c\geq 2\sqrt{2}+1[/tex]
Dấu "=" xảy ra khi [tex](x;y;z)=(1;2;2)[/tex] và hoán vị