- 4 Tháng năm 2018
- 1,485
- 1,656
- 236
- Vĩnh Phúc
- Trung học cơ sở Lập Thạch
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho a,b,c là các số dương. Chứng minh rằng :
[tex]\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}[/tex]
Đẳng thức xảy ra khi nào?
_______________________________________________________________________________________________
Em cảm ơn.
[tex]\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}[/tex]
Đẳng thức xảy ra khi nào?
_______________________________________________________________________________________________
Em cảm ơn.