Toán 8 Bất đẳng thức

02-07-2019.

Học sinh tiến bộ
HV CLB Lịch sử
Thành viên
4 Tháng năm 2018
1,485
1,656
236
Vĩnh Phúc
Trung học cơ sở Lập Thạch
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho a,b,c là các số dương. Chứng minh rằng :
[tex]\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}[/tex]
Đẳng thức xảy ra khi nào?
_______________________________________________________________________________________________
Em cảm ơn.
 

iiarareum

Học sinh chăm học
Thành viên
13 Tháng chín 2018
444
483
76
19
Vĩnh Phúc
THCS TT Hoa Sơn
Cho a,b,c là các số dương. Chứng minh rằng :
[tex]\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}[/tex]
Đẳng thức xảy ra khi nào?
_______________________________________________________________________________________________
Em cảm ơn.
[tex]\frac{1}{a+3b}+\frac{1}{a+b+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}[/tex]
Tương tự ta được ĐPCM.
Dấu ''='' xra <=> a=b=c
Đây là câu trong đề KSCL ĐT9 của Yên Lạc lần II, năm nay.
 
Top Bottom