Toán 9 Bất đẳng thức

Sầu Thiên Thu

Học sinh mới
Thành viên
29 Tháng tư 2020
18
15
6
Vĩnh Long
THPT Tân Lược
Ta có:
[TEX]\left( * \right) \Leftrightarrow \dfrac{{2bc}}{{{{\left( {b + c} \right)}^2}}} - \dfrac{1}{2} + \dfrac{{2ac}}{{{{\left( {a + c} \right)}^2}}} - \dfrac{1}{2} + \dfrac{{2ab}}{{{{\left( {a + b} \right)}^2}}} - \dfrac{1}{2} + \dfrac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} - 1 \geqslant 0\\ \Leftrightarrow \dfrac{{{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}}}{{2\left( {ab + bc + ca} \right)}} - \dfrac{{{{\left( {b - c} \right)}^2}}}{{2{{\left( {b + c} \right)}^2}}} - \dfrac{{{{\left( {c - a} \right)}^2}}}{{2{{\left( {c + a} \right)}^2}}} + \dfrac{{{{\left( {a - b} \right)}^2}}}{{2{{\left( {a + b} \right)}^2}}} \geqslant 0\\ \Leftrightarrow \sum {{{\left( {a - b} \right)}^2}\left[ {\dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {b + a} \right)}^2}}}} \right] \ge 0}[/TEX]
Khi đó:
[TEX]{S_a} = \dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {b + c} \right)}^2}}}\\ {S_b} = \dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {a + c} \right)}^2}}}\\ {S_c} = \dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {a + b} \right)}^2}}}[/TEX]
Giả sử [TEX]a \geqslant b \geqslant c[/TEX]
Ta thấy: [TEX]{S_b} = \dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {a + c} \right)}^2}}} \geqslant \dfrac{1}{{{a^2} + ac + ac}} - \dfrac{1}{{{{\left( {a + c} \right)}^2}}} \geqslant 0 \Rightarrow {S_c} \ge {S_b} \geqslant 0[/TEX]
Theo tiêu chuẩn 4, nếu [TEX]a \geqslant b \geqslant c[/TEX] và [TEX]{S_b};{S_c};{a^2}.{S_b} + {b^2}.{S_a} \geqslant 0[/TEX] thì [TEX](*)[/TEX] đúng
Ta chỉ cần chứng minh: [TEX]{S_c};{a^2}.{S_b} + {b^2}.{S_a} \geqslant 0[/TEX]
Thật vậy:
[TEX]{S_c};{a^2}.{S_b} + {b^2}.{S_a} \ge 0 \Leftrightarrow {a^2}\left[ {\dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {a + c} \right)}^2}}}} \right] + {b^2}\left[ {\dfrac{1}{{ab + bc + ca}} - \dfrac{1}{{{{\left( {b + c} \right)}^2}}}} \right] \geqslant 0\\ \Leftrightarrow {a^2}\left[ {\dfrac{{{a^2} + {c^2} + ac - bc - ab}}{{\left( {ab + bc + ca} \right){{\left( {a + c} \right)}^2}}}} \right] + {b^2}\left[ {\dfrac{{{b^2} + {c^2} + bc - ab - ca}}{{\left( {ab + bc + ca} \right){{\left( {b + c} \right)}^2}}}} \right] \geqslant 0\\ \Leftrightarrow \dfrac{{{c^2}{a^2}}}{{{{\left( {a + c} \right)}^2}}} + \dfrac{{{b^2}{c^2}}}{{{{\left( {b + c} \right)}^2}}} + {\left( {a - b} \right)^2}\left[ {\dfrac{{ab + bc + ca}}{{\left( {a + c} \right)\left( {b + c} \right)}}} \right] \geqslant 0[/TEX]
BĐT cuối cùng luôn đúng. Ta có đpcm. Dấu "=" xảy ra khi [TEX]a=b=c[/TEX]
 
Top Bottom