Cho a,b,c > 0, a + b + c \leq 1
Áp dụng [TEX]Bunhiacopxki[/TEX] ta có.
[TEX]\sum_{cyclic}\sqrt{\(1^2+9^2\).\(x^2+\frac{1}{x^2}\)}\ge \sum_{cyclic}\(x+\frac{9}{x}\)[/TEX]
[TEX]\righ \sum_{cyclic}\sqrt{\(x^2+\frac{1}{x^2}\)}\ge \frac{1}{\sqrt{82}}\sum_{cyclic}\(x+\frac{9}{x} \)[/TEX]
[TEX]\righ \sum_{cyclic}\sqrt{\(x^2+\frac{1}{x^2}\)}\ge \frac{1}{\sqrt{82}}\sum_{cyclic}\(81x+\frac{9}{x}-80x \)(1)[/TEX]
Ta lại có theo [TEX]AM-GM[/TEX]
[TEX]81x+\frac{9}{x}\ge 54[/TEX]
[TEX]\righ\sum_{cyclic}\(81x+\frac{9}{x}\)\ge 162 (2)[/TEX]
[TEX](1)&(2)\righ \sum_{cyclic}\sqrt{\(x^2+\frac{1}{x^2}\)}\ge \frac{1}{\sqrt{82}} .\(162-80.\sum_{cyclic}a\)\ge \sqrt{82}\ \(dpcm\) [/TEX]