Toán 8 bất đẳng thức

TranPhuong27

Học sinh chăm học
Thành viên
26 Tháng ba 2020
539
681
106
20
Hải Dương
THCS Lê Thanh Nghị
Áp dụng BĐT Cauchy-Schwarz:
[tex]\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}[/tex][tex]\geq \frac{(x^2+y^2+z^2)^2}{3.(xy+yz+zx)}\geq \frac{1}{3(x^2+y^2+z^2)}=\frac{1}{3}[/tex]
Dấu "=" xảy ra <=> [tex]x=y=z=\frac{1}{\sqrt3}[/tex]
 
  • Like
Reactions: kido2006

kido2006

Cựu TMod Toán
Thành viên
26 Tháng một 2018
1,693
2
2,653
401
Bắc Ninh
THPT Chuyên Bắc Ninh
Áp dụng BĐT Cauchy-Schwarz:
[tex]\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}[/tex][tex]\geq \frac{(x^2+y^2+z^2)^2}{3.(xy+yz+zx)}\geq \frac{1}{3(x^2+y^2+z^2)}=\frac{1}{3}[/tex]
Dấu "=" xảy ra <=> [tex]x=y=z=\frac{1}{\sqrt3}[/tex]
chỗ dấu [tex]\geq[/tex] đầu tiên là bất đẳng thức gì đấy ạ?????????
 
Top Bottom