C1: Ta có: [tex]\frac{(b+c-a)^{2}}{a^{2}+(b+c)^{2}}=\frac{(1-2a)^2}{a^2+(1-a)^2}=\frac{4a^2-4a+1}{2a^2-2a+1}[/tex]
Cần chứng minh [tex]\frac{4a^2-4a+1}{2a^2-2a+1}\geq \frac{23-54a}{25}\Leftrightarrow 2(3x-1)^2(6x+1)\geq 0(luôn đúng)[/tex]
Tương tự thì ta có: [tex]\frac{(b+c-a)^{2}}{a^{2}+(b+c)^{2}}+\frac{(c+a-b)^{2}}{b^{2}+(c+a)^{2}}+\frac{(a+b-c)^{2}}{c^{2}+(a+b)^{2}}\geq \frac{23-52a}{25}+\frac{23-52b}{25}+\frac{23-52c}{25}=\frac{3}{5}(đpcm)[/tex]
C2: BĐT cần chứng minh [tex]\Leftrightarrow 1-\frac{(b+c-a)^{2}}{a^{2}+(b+c)^{2}}+1-\frac{(c+a-b)^{2}}{b^{2}+(c+a)^{2}}+1-\frac{(a+b-c)^{2}}{c^{2}+(a+b)^{2}}\leq 3-\frac{3}{5}\Leftrightarrow \frac{2ab+2ac}{a^{2}+(b+c)^{2}}+\frac{2bc+2ab}{b^{2}+(c+a)^{2}}+\frac{2ca+2cb}{c^{2}+(a+b)^{2}}\leq \frac{12}{5}\Leftrightarrow \frac{a(b+c)}{a^2+(b+c)^2}+\frac{b(c+a)}{b^2+(c+a)^2}+\frac{c(c+a)}{c^2+(b+a)^2}\leq \frac{6}{5}\Leftrightarrow \frac{a(1-a)}{2a^2-2a+1}+\frac{b(1-b)}{2b^2-2b+1}+\frac{c(1-c)}{2c^2-2c+1}\leq \frac{6}{5}(1)[/tex]
Ta thấy: [tex]2c(1-c)\leq (\frac{2c+1-c}{2})^2=\frac{(1+c)^2}{4}\Rightarrow 2c^2-2c+1=1-2c(1-c)\geq 1-\frac{(1+c)^2}{4}=\frac{(1-c)(c+3)}{4}\Rightarrow \frac{c(1-c)}{2c^2-2c+1}\leq \frac{c(1-c)}{\frac{(1-c)(c+3)}{4}}=\frac{4c}{c+3}=4.\frac{c}{c+3}=4(1-\frac{3}{c+3})[/tex]
Tương tự ta cần chứng minh: [tex]4(1-\frac{3}{a+3})+4(1-\frac{3}{b+3})+4(1-\frac{3}{c+3})\leq \frac{6}{5}\Leftrightarrow 12(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3})\geq 12-\frac{6}{5}=\frac{54}{5}\Leftrightarrow \frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}\geq \frac{9}{10}[/tex]
Lại có: [tex]\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}\geq \frac{9}{a+b+c+3}=\frac{9}{10}\Rightarrow đpcm[/tex]