Giả sử [tex]a\geq b\geq c[/tex]
Ta có
[tex]\frac{a^{2016}}{b+c-a}-a^{2015}=a^{2015}(\frac{a}{b+c-a}-1)\geq 0[/tex]
[tex]\frac{b^{2016}}{c+a-b}-b^{2015}+\frac{c^{2016}}{a+b-c}-c^{2015}\\=\frac{b^{2015}(2b-a-c)}{a+c-b}+\frac{c^{2015}(2c-a-b)}{a+b-c}\\\geq \frac{2b^{2016}-ab^{2015}-cb^{2015}+2c^{2016}-ac^{2015}-bc^{2015}}{c+a-b}[/tex]
Cái tử bạn thử cauchy đi