a + b + c + 3/a + 9/2b + 4/c
= 4a/4 + 3b/3 + 4c/4 + 3/a + 9/2b + 4/c
= 3a/4 + 3/a + 2b/3 + 9/2b + c/4 + 4/c + a/4 + b/2 + 3c/4
= (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) + (a/4 + b/2 + 3c/4)
= (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) + (a + 2b + 3c)/4
>= (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) + 20/4
= (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) + 5
Áp dụng bất đẳng thức cô si:
3a/4 + 3/a >= √(3a/4.3/a) = 3
2b/3 + 9/2b >= √(2b/3.9/2b) = 3
c/4 + 4/c >= √(c/4.4/c) = 2
=> (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) >= 3 + 3 + 2 = 8
=> (3a/4 + 3/a) + (2b/3 + 9/2b) + (c/4 + 4/c) + 5 >= 13
=> a + b + c + 3/a + 9/2b + 4/c
Đẳng thức xảy ra khi:
{3a/4 = 3/a
{2b/3 = 9/2b
{c/4 = 4/c
<=> {a = 2
{b = 3
{c = 4.vậy...