[tex]\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(x+z)(y+z)}}\leq \frac{1}{2}(\frac{x}{x+z}+\frac{y}{y+z})[/tex]
Tương tự : [tex]\sqrt{\frac{yz}{yz+x}}\leq \frac{1}{2}(\frac{y}{x+y}+\frac{z}{x+z});\sqrt{\frac{xz}{xz+y}}\leq \frac{1}{2}(\frac{x}{x+y}+\frac{z}{y+z})[/tex]
Cộng vế vs vế các bđt trên ->đpcm
dấu = xảy ra <=> x=y=z=1/3