[tex]\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{xyz}{xy}+\frac{xyz}{yz}+\frac{xyz}{xz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}[/tex]
[tex]=\frac{2}{3}(x+y+z)+\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq \frac{2}{3}.3\sqrt[3]{xyz}+2=2+2=4[/tex]
Dấu ''='' xảy ra khi: $x=y=z=1$