Toán 9 Cho $a,b,c>0$ thỏa mãn $abc=1$. Chứng minh $\sum \frac{1}{\sqrt{a^4-a^3+ab+2}}\leq \sqrt{3}$

Ann Lee

Cựu Mod Toán
Thành viên
14 Tháng tám 2017
1,782
2,981
459
Hưng Yên
Ta có [tex](a-1)^2(a^2+a+1)\geq 0[/tex] với mọi a [TEX]\Leftrightarrow a^4-a^3-a+1\geq 0[/TEX]
[tex]\Rightarrow a^4-a^3+ab+2\geq ab+a+1[/tex]
[tex]\Rightarrow \frac{1}{\sqrt{a^4-a^3+ab+2}}\leq \frac{1}{\sqrt{ab+a+1}}[/tex]
Tương tự:....
Suy ra [tex]VT\leq \frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}[/tex]
Theo BĐT Bunyakovsy ta có:
[tex]\left ( \frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}} \right )^{2}\leq (1^2+1^2+1^2)\left ( \frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1} \right )=3\left( \frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1} \right ) [/tex]
Xét [tex]\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1[/tex]
Suy ra [tex]VT\leq \sqrt{3\left ( \frac{1}{ab+a+1}+\frac{1}{bc+c+1}+\frac{1}{ca+c+1} \right )}=\sqrt{3}[/tex]
Dấu = xảy ra khi [tex]a=b=c=1[/tex]
 
Top Bottom