Cho 3 số dương [TEX]x, y,z[/TEX] thõa mãn [TEX]x+2y+3z=18[/TEX] Chứng minh rằng: [tex]S=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3[B]z[/B]}[/tex]
Đặt:
[tex]\left\{\begin{matrix} 1+x=a >0 & & \\ 1+2y=b>0 & & \\ 1+3z=c>0 & & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2y+3z+5=b+c+3 & & \\ 3z+x+5=a+c+3 & & \\ x+2y+5=a+b+3 & & \end{matrix}\right.[/tex]
[tex]a+b+c=x+2y+3z+3=21[/tex]
Khi đó:
[tex]S=\frac{b+c+3}{a}+\frac{a+c+3}{b}+\frac{a+b+3}{c}=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}+3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq 6+3.\frac{9}{a+b+c}=6+\frac{9}{7}=\frac{51}{7}[/tex]
Dấu ''='' xảy ra khi: [tex]a=b=c[/tex] [tex]\Leftrightarrow x=2y=3z\Rightarrow x=6;y=3;z=2[/tex]