Có [tex]3(xy+yz+zx)\leq (x+y+z)^{2}\Rightarrow 4(xy+yz+zx)\leq \frac{4}{3}(x+y+z)^{2}[/tex]
[tex]9=x(4y+1)+y(4z+1)+z(4x+1)=4(xy+yz+zx)+(x+y+z)\leq \frac{4}{3}(x+y+z)^{2}+ (x+y+z)[/tex]
[tex]\Leftrightarrow 0\leq 4(x+y+z)^{2}+3(x+y+z)-27=[4(x+y+z)-9](x+y+z+3)[/tex]
[tex]\Rightarrow x+y+z\geq \frac{9}{4}[/tex]
Áp dụng BĐT AM-GM ta có: [tex]x^{2}+\frac{9}{16}\geq 2\sqrt{x^{2}.\frac{9}{16}}=\frac{3}{2}x[/tex]
[tex]\Rightarrow x^{2}\geq \frac{3}{2}x-\frac{9}{16}[/tex]
Tương tự:....
Suy ra [tex]P=x^{2}+y^{2}+z^{2}\geq \frac{3}{2}(x+y+z)-\frac{27}{16}\geq \frac{3}{2}.\frac{9}{4}-\frac{27}{16}=\frac{27}{16}[/tex]
Dấu "=" xảy ra [tex]\Leftrightarrow x=y=z=\frac{3}{4}[/tex]