Toán 9 Bất đẳng thức

Nguyễn Nho Hùng

Học sinh
Thành viên
20 Tháng sáu 2017
7
2
21
21
  • Like
Reactions: mỳ gói

linhntmk123

Học sinh chăm học
Thành viên
22 Tháng sáu 2017
386
183
94
21
Nghệ An
THCS nguyễn trãi
cho a,b,c dương thỏa mãn :[tex]\frac{1}{a+b+1}+ \frac{1}{b+c+1}+\frac{1}{c+a+1}[/tex]=2
Tìm giá trị lớn nhất của biểu thức : P= (a+b)(b+c)(c+a)
[tex]\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}= \frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}[/tex]
[tex]\geq 2\frac{\sqrt{(b+c)(c+a)}}{\sqrt{(b+c+1)(c+a+1)}}[/tex]
cmtt [tex]\frac{1}{b+c+1}\geq 2\frac{\sqrt{(b+a)(c+a)}}{\sqrt{(b+a+1)(c+a+1)}}[/tex]
[tex]\frac{1}{c+a+1}\geq 2\frac{\sqrt{(a+b)(c+b)}}{\sqrt{(a+b+1)(c+b+1)}}[/tex]
[tex]\Rightarrow \frac{1}{(a+b+1)(b+c+1)(c+a+1)}\geq 8\frac{(a+b)(b+c)(c+a)}{(a+b+1)(b+c+1)(c+a+1)}[/tex]
[tex]\Rightarrow 1\geq 8(a+b)(b+c)(c+a)[/tex] [tex]\Rightarrow ...[/tex]
 

Nguyễn Nho Hùng

Học sinh
Thành viên
20 Tháng sáu 2017
7
2
21
21
[tex]\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}= \frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}[/tex]
[tex]\geq 2\frac{\sqrt{(b+c)(c+a)}}{\sqrt{(b+c+1)(c+a+1)}}[/tex]
cmtt [tex]\frac{1}{b+c+1}\geq 2\frac{\sqrt{(b+a)(c+a)}}{\sqrt{(b+a+1)(c+a+1)}}[/tex]
[tex]\frac{1}{c+a+1}\geq 2\frac{\sqrt{(a+b)(c+b)}}{\sqrt{(a+b+1)(c+b+1)}}[/tex]
[tex]\Rightarrow \frac{1}{(a+b+1)(b+c+1)(c+a+1)}\geq 8\frac{(a+b)(b+c)(c+a)}{(a+b+1)(b+c+1)(c+a+1)}[/tex]
[tex]\Rightarrow 1\geq 8(a+b)(b+c)(c+a)[/tex] [tex]\Rightarrow ...[/tex]
hay vậy :v
 
Top Bottom