[tex]\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=1[/tex] [tex]P=\sum \frac{a}{\frac{a^3}{bc}+\frac{ab}{c}+\frac{ac}{b}+bc} \leqslant \sum{\frac{a}{2\sqrt{\left (\frac{a^3}{bc}+\frac{ab}{c}+\frac{ac}{b} \right )bc}}}=\frac{\sqrt{3a}}{2\sqrt{\left (\frac{a^3}{bc}+\frac{ab}{c}+\frac{ac}{b} \right )\left ( 3\frac{bc}{a} \right )}}\leqslant \sum{\frac{\sqrt{3a}}{2(a+b+c)}}\leqslant \frac{\sqrt{9(a+b+c)}}{2(a+b+c)}=\frac{3}{2\sqrt{a+b+c}}\leqslant \frac{3}{2\sqrt{3\sqrt[3]{abc}}}\leqslant \frac{3}{2.3}=\frac{1}{2}[/tex]
câu 1 [tex]a^2+b^2+c^2=abc\geqslant 3\sqrt[3]{a^2b^2c^2}=>abc\geqslant 27[/tex]