Cho các số thực dương a,b,c thoả mãn ab+bc+ca=11. Tìm GTNN
[tex]P=\frac{5a+5b+2c}{\sqrt{12(a^{2}+11)}+\sqrt{12(b^{2}+11)}+\sqrt{c^{2}+11}}[/tex]
$\sqrt{12(a^{2}+11)}+\sqrt{12(b^{2}+11)}+\sqrt{c^{2}+11}$
$=\sqrt{12(a^{2}+ab+bc+ca)}+\sqrt{12(b^{2}+ab+bc+ca)}+\sqrt{c^{2}+ab+bc+ca}$ ( vì [tex]ab+bc+ca=11[/tex])
$=\sqrt{12(a+b)(a+c)}+\sqrt{12(b+a)(b+c)}+\sqrt{(c+a)(c+b)}$
$\leq \frac{6(a+b)+2(a+c)}{2}+\frac{6(b+a)+2(b+c)}{2}+\frac{(c+a)+(c+b)}{2}$ ( áp dụng BĐT AM-GM)
$=\frac{15a+15b+6c}{2}=\frac{3(5a+5b+2c)}{2}$
$\Rightarrow P=\frac{5a+5b+2c}{\sqrt{12(a^{2}+11)}+\sqrt{12(b^{2}+11)}+\sqrt{c^{2}+11}}\geq \frac{5a+5b+2c}{\frac{3(5a+5b+2c)}{2}}=\frac{2}{3}$
Dấu "=" xảy ra [tex]\Leftrightarrow \left\{\begin{matrix} a=b=1\\c=5 \end{matrix}\right.[/tex]