Hướng dẫn:
Bài 5:
[tex]a) \frac{1}{a}+\frac{1}{b}\geq \frac{(1+1)^2}{a+b}=\frac{4}{a+b}[/tex]
b) [tex](a^2+\frac{1}{a})+(b^2+\frac{1}{b})\geq 2\sqrt{a^2.\frac{1}{a}}+2\sqrt{b^2.\frac{1}{b}}=2(\sqrt{a}+\sqrt{b})[/tex]
Bài 6:
a) Thay a+b+c=1 vào đc: (a+b)(b+c)(a+c) áp dụng AM-GM
a+b[tex]\geq 2\sqrt{ab};b+c\geq 2\sqrt{bc}; a+c\geq 2\sqrt{ac}[/tex]
Nhân vế theo vế được đpcm
b) Ta có: [tex]1=(a+b+c)^2\geq 4a(b+c)\Rightarrow b+c\geq 4a(b+c)^2\geq 4a.4bc=16abc[/tex]
c) [tex]\frac{a.1}{a+1}+\frac{b.2}{b+2}+\frac{c.3}{c+3}\leq \frac{a}{4}+\frac{b}{4}+\frac{c}{4}+\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{a+b+c}{4}+\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{7}[/tex]