$P=\frac{1}{a(1+b)}+\frac{1}{b(1+c)}+\frac{1}{c(1+a)}$
$=\frac{abc}{a(1+b)}+\frac{abc}{b(1+c)}+\frac{abc}{c(1+a)}$
$=\frac{bc}{1+b}+\frac{ac}{1+c}+\frac{ab}{1+a} $
Đặt $a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\rightarrow abc=1$
$P=\frac{yz}{x(z+y)}+\frac{zx}{y(x+z)}+\frac{xy}{z(x+y)}$
$=\frac{xy}{z(x+y)}+\frac{xy}{x(y+z)}+\frac{xy}{y(x+z)}+\frac{yz}{z(x+y)}+\frac{yz}{x(y+z)}+\frac{yz}{y(x+z)}+\frac{zx}{z(x+y)}+\frac{zx}{x(y+z)}+\frac{zx}{y(x+z)}-3$
$=(xy+yz+zx)(\frac{1}{xz+yz}+\frac{1}{zx+yz}+\frac{1}{yz+yx})-3$
$= \frac{1}{2}.(xz+yz+zx+yz+yz+yx)(\frac{1}{xz+yz}+\frac{1}{zx+yz}+\frac{1}{yz+yx})-3$
$\geq \frac{1}{2}.9-3=\frac{3}{2}$
Dấu "=" xảy ra <=>....