B5
[tex]x^4-x^2\sqrt{x}+x-\sqrt{x}+1>0[/tex]
[tex]<=>(x^2-\frac{\sqrt{x}}{2})^2+(\frac{\sqrt{3x}}{2}-\frac{1}{\sqrt{3}})^2+\frac{2}{3}>0[/tex]
B6
[tex]\frac{a+c}{b}+\frac{a+b}{c}+\frac{c+b}{a}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{a}{c}+\frac{b}{a} \geq 3\sqrt[3]{1} + 3\sqrt[3]{1} (Cauchy) =6[/tex]
B7
[tex]\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}} \geq \frac{(\sqrt{a}+\sqrt{b})^2}{\sqrt{a}+\sqrt{b}} (Cauchy-Schwarz) = \sqrt{a}+\sqrt{b}[/tex]