Bất đẳng thức

P

phamhuy20011801

$1,$ Đưa về $(\sqrt{a}-\sqrt{b})^2+(\sqrt{b}-\sqrt{c})^2+(\sqrt{c}-\sqrt{a})^2 \ge 0$, lđ.

$2a, \sqrt{a+1}+\sqrt{b+1}+ \sqrt{c+1}= \sqrt{(a+1).1}+ \sqrt{(b+1).1}+ \sqrt{(c+1).1} \le \dfrac{a+1+1}{2}+\dfrac{b+1+1}{2}+\dfrac{c+1+1}{2}=3,5.$
$\leftrightarrow a=b=c=0$
Dấu "=" không xảy ra do $a,b,c >0$

$b, \sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2} \le \dfrac{a+2+1}{2}+\dfrac{b+2+1}{2}+\dfrac{c+2+1}{2}=5.$
Không xảy ra dấu "=".
 
Top Bottom