Bất đẳng thức

  • Thread starter hoangthanhhai0204@gmail.com
  • Ngày gửi
  • Replies 1
  • Views 384

H

hien_vuthithanh

AD Cosi :

$\dfrac{a^3}{(b+c)^3}+\dfrac{1}{8}+\dfrac{1}{8}\ge \dfrac{3}{4}.\dfrac{a}{b+c}$

$\dfrac{b^3}{(a+c)^3}+\dfrac{1}{8}+\dfrac{1}{8}\ge \dfrac{3}{4}.\dfrac{b}{a+c}$

$\dfrac{c^3}{(a+b)^3}+\dfrac{1}{8}+\dfrac{1}{8}\ge \dfrac{3}{4}.\dfrac{c}{a+b}$

$\Longrightarrow \dfrac{a^3}{(b+c)^3}+\dfrac{b^3}{(a+c)^3}+\dfrac{c^3}{(a+b)^3} \ge \dfrac{3}{4}.(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b})-6.\dfrac{1}{8}\ge \dfrac{3}{4}.\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{8}$

Cái $\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge \dfrac{3}{2}$ là BĐT Nesbitt :D
 
Top Bottom