Bất đẳng thức

L

lp_qt

chứng minh vế: $2a+2b+2c \ge \dfrac{a^2+b^2}{c}+\dfrac{a^2+c^2}{b}+\dfrac{c^2+b^2}{a}$

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a} \ge \dfrac{(a+b+c)^2}{a+b+c}=a+b+c$

$\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b} \ge \dfrac{(a+b+c)^2}{a+b+c}=a+b+c$

\Rightarrow $2a+2b+2c \ge \dfrac{a^2+b^2}{c}+\dfrac{a^2+c^2}{b}+\dfrac{c^2+b^2}{a}$ (đpcm)
 
H

hien_vuthithanh

Cho a,b,c dương. CM
$2a+2b+2c$ \leq $\dfrac{a^2+b^2}{c} +\dfrac{b^2+c^2}{a} + \dfrac{c^2+a^2}{b}$ \leq $\dfrac{2a^3}{bc} + \dfrac{2b^3}{ca} +\dfrac{2c^3}{ab}$


Cái đầu :

$\dfrac{a^2+b^2}{c} +\dfrac{b^2+c^2}{a} + \dfrac{c^2+a^2}{b}$

=$ \dfrac{a^2}{c}+ \dfrac{b^2}{c}+ \dfrac{b^2}{a}+\dfrac{c^2}{a}+ \dfrac{c^2}{b}+ \dfrac{a^2}{b} \ge \dfrac{[2(a+b+c)]^2}{a+b+c}=2(a+b+c)$

$\rightarrow dpcm$
 
E

eye_smile

Chứng minh vế còn lại:

BĐT \Leftrightarrow $\dfrac{2a^4+2b^4+2c^4}{abc} \ge \dfrac{ab(a^2+b^2)+ac(a^2+c^2)+bc(b^2+c^2)}{abc}$

\Leftrightarrow $2a^4+2b^4+2c^4 \ge ab(a^2+b^2)+ac(a^2+c^2)+bc(b^2+c^2)$

Ta có:$a^4+b^4 \ge \dfrac{(a^2+b^2)^2}{2} \ge \dfrac{2ab(a^2+b^2)}{2}=ab(a^2+b^2)$

Tương tự \Rightarrow đpcm.
 
Top Bottom