bất đẳng thức

L

lp_qt

ta có:

•$b^2+3=b^2+ab+bc+ac=(b+a)(b+c) \Longrightarrow \dfrac{a^3}{b^2+3}=\dfrac{a^3}{(b+a)(b+c)}$

\Rightarrow $P=\dfrac{a^3}{(b+a)(b+c)}+\dfrac{b^3}{(c+a)(c+b)}+\dfrac{c}{(a+b)(a+c)}$

• $(a+b+c)^2 \ge 3(ab+bc+ac)=9 \Longrightarrow a+b+c \ge 3$

• $\dfrac{a^3}{(a+b)(b+c)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge \dfrac{3}{4}a$

\Rightarrow $P+ \dfrac{1}{2}(a+b+c) \ge \dfrac{3}{4}(a+b+c)$

\Rightarrow $P \ge \dfrac{1}{4}(a+b+c) \ge \dfrac{1}{4}.3=\dfrac{3}{4}$
 
Top Bottom