Bất đẳng thức

M

minhthu151999

Last edited by a moderator:
E

eye_smile

$\sqrt{ab}+\sqrt{cd} \le \sqrt{(a+c)(b+d)}$

\Leftrightarrow $ab+cd+2\sqrt{abcd} \le ab+ad+bc+cd$

\Leftrightarrow $2\sqrt{abcd} \le ad+bc$ (đúng)

\Rightarrow đpcm
 
E

eye_smile

$n=\dfrac{a_1}{a_1+1}+...+\dfrac{a_n}{a_n+1}+ \dfrac{1}{a_1+1}+...+\dfrac{1}{a_n+1} \ge n\sqrt[n]{\dfrac{a_1.a_2....a_n}{(1+a_1)(1+a_2)...(1+a_n)}}+n\sqrt[n]{\dfrac{1}{(a_1+1)(a_2+1)...(a_n+1)}}$

\Leftrightarrow $1 \ge \dfrac{\sqrt[n]{a_1.a_2...a_n}+1}{\sqrt[n]{(1+a_1)...(1+a_n)}}$

\Rightarrow đpcm
 
E

eye_smile

$1+\sqrt[n]{a_1.a_2...a_n} \ge 2\sqrt{\sqrt[n]{a_1.a_2...a_n}}$

\Rightarrow $(1+\sqrt[n]{a_1.a_2...a_n})^n \ge 2^n.\sqrt{a_1.a_2...a_n}$

đpcm
 
Top Bottom