Bất đẳng thức

P

pipilove_khanh_huyen

V

vipboycodon

Theo bdt cauchy ta có $A = a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge a+b+c+\dfrac{9}{a+b+c} = 4(a+b+c)+\dfrac{9}{a+b+c}-3(a+b+c) \ge 12-\dfrac{9}{2} = \dfrac{15}{2}$
Min $A = \dfrac{15}{2}$ khi $a = b = c = \dfrac{1}{2}$
 
H

huynhbachkhoa23

Bài 1:

$C=\dfrac{-\dfrac{18}{99}x^2+\dfrac{12}{11}x-\dfrac{18}{11}}{x^2+5x+9}+\dfrac{18}{99}=\dfrac{-\dfrac{18}{99}(x-3)^2}{(x-\dfrac{5}{2})^2+\dfrac{11}{4}}+\dfrac{18}{99} \le \dfrac{18}{99}$

$\text{maxC}=\dfrac{18}{99} \leftrightarrow x=3$

Cung cấp thêm:

$C=\dfrac{2x^2+12x+18}{x^2+5x+9}-2 =\dfrac{2(x+3)^2}{x^2+5x+9}-2 \ge -2$

$\text{minC}=-2 \leftrightarrow x=-3$
 
Top Bottom