T
tiendung_1999


1.có một cuốn sách thì để $\dfrac{a}{1+a^2} + \dfrac{b}{1+b^2}$ \geq $\dfrac{2}{1+ab}$ có sách khác thì để $\dfrac{1}{1+a^2} +\dfrac{1}{1+b^2}$ \geq $\dfrac{2}{1+ab}$
2.$ \dfrac{a^2}{b^2}$ + $\dfrac{b^2}{a^2}$ +4 \geq $3(\dfrac{a}{b} + \dfrac{b}{a})$
3.$\dfrac{a^2}{a^4+1}$ + $\dfrac{b^3}{b^6+1}$ + $\dfrac{c^4}{c^8+1}$ + $\dfrac{d^5}{d^{10}+1}$ \leq 2
2.$ \dfrac{a^2}{b^2}$ + $\dfrac{b^2}{a^2}$ +4 \geq $3(\dfrac{a}{b} + \dfrac{b}{a})$
3.$\dfrac{a^2}{a^4+1}$ + $\dfrac{b^3}{b^6+1}$ + $\dfrac{c^4}{c^8+1}$ + $\dfrac{d^5}{d^{10}+1}$ \leq 2