Bài 1:
$x^2+y^2+\dfrac{(xy-1)^2}{(x-y)^2}=(x-y)^2+\dfrac{(1-xy)^2}
{(x-y)^2}+2xy \geq 2(1-xy)+xy=2$
$\rightarrow x^2+y^2+\dfrac{(xy-1)^2}{(x-y)^2} \geq 2$
Dấu $"="$ xảy ra khi $(x-y)^2=\dfrac{(1-xy)^2}{(x-y)^2} \leftrightarrow
...$
Bài 2:
$\dfrac{b}{b^2+1}+\dfrac{3(b^2+1)}{2b}=\dfrac{b}{b^2+1}+
\dfrac{b^2+1}{4b}+\dfrac{5(b^2+1)}{4b}$
Ta có:
$\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4b}\geq 1$
Lại có $b^2+1 \geq 2b \leftrightarrow \dfrac{b^2+1}{2b}\geq 1
\leftrightarrow \dfrac{5(b^2+1)}{4b} \geq 2,5$
$\leftrightarrow \dfrac{b}{b^2+1}+\dfrac{b^2+1}
{4b}+\dfrac{5(b^2+1)}{4b} \geq 3,5 \leftrightarrow dpcm$
Dấu $"="$ xảy ra khi $\dfrac{b}{b^2+1}=\dfrac{b^2+1}{4b}$ và
$b^2+1=2b$
$\leftrightarrow b=1$