bất đẳng thức

T

thuvan_98

áp dung BĐT bunhiaxkopski:
[\sqrt[n]{A}(c*(a-c)+\sqrt[n]{A}(c*(b-c)]^2\leq(c+b-c)*(a-c+c)=ab
\Rightarrow\sqrt[n]{A}(c*(c-a)+\sqrt[n]{A}(c*(b-c)\leq\sqrt[n]{A}ab
 
Last edited by a moderator:
V

vansang02121998

Giả sử $\sqrt{c(a-c)}+\sqrt{c(b-c)} > \sqrt{ab}$

$\Leftrightarrow c(a-c)+2c\sqrt{(a-b)(b-c)}+c(b-c) > ab$

$\Leftrightarrow -2c^2+2c\sqrt{(a-c)(b-c)}+ab+bc-ab > 0$

$\Leftrightarrow c^2-2c\sqrt{(a-c)(b-c)}+(ab-ac-bc+c^2) < 0$

$\Leftrightarrow c^2-2c\sqrt{(a-c)(b-c)}+(a-c)(b-c) < 0$

$\Leftrightarrow [c-\sqrt{(a-c)(b-c)}]^2 < 0$ ( Vô lý )

Vậy, $\sqrt{c(a-c)}+\sqrt{c(b-c)} \le \sqrt{ab}$

Dấu $"="$ xảy ra khi $c=\sqrt{(a-c)(b-c)} \Leftrightarrow ab-ac-bc=0$
 
Top Bottom