bất đẳng thức?

H

hoanghondo94

[TEX] (1+x)(1+\frac{y}{x})[/TEX][TEX](1+\red\frac{9}{\sqrt{y}})^2[/TEX][TEX] \geq 256[/TEX]

[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2 = (1+x+\frac{y}{x}+y)(1+\frac{9}{\sqrt{y}})^2 \geq (1+2\sqrt{y}+y)(1+\frac{9}{\sqrt{y}})^2 \\\\ = [(1+\sqrt{y})(1+\frac{9}{\sqrt{y}})]^2 = (1+\sqrt{y}+\frac{9}{\sqrt{y}}+9)^2 \geq (1+6+9)^2=256 [/TEX]..
 
Last edited by a moderator:
T

truongduong9083

mình gợi ý giúp bạn nhé

Chứng minh bổ đề: Với [TEX]a, b \geq 0[/TEX]
ta có
[TEX](1+a)(1+b)\geq (1+\sqrt{ab})^2[/TEX]
Áp dụng bổ đề ta có
[TEX](1+x)(1+\frac{y}{x})\geq (1+\sqrt{y})^2[/TEX]
[TEX]\Rightarrow (1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2\geq (1+\sqrt{y})^2(1+\frac{9}{\sqrt{y}})^2 (1) [/TEX]

[TEX](1+\sqrt{y})(1+\frac{9}{\sqrt{y}})= 10 + \sqrt{y}+\frac{9}{\sqrt{y}}\geq 16 (2)[/TEX]
Từ (1) và (2) suy ra
[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2\ \geq 16^2 = 256[/TEX]
dấu bằng xảy ra khi x = 3; y =9
 
Last edited by a moderator:
Top Bottom