bất đẳng thức?

T

truongduong9083

mình giúp bạn nhé

Ta có
[TEX]\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq \frac{9}{ab+bc+ca}[/TEX]
nên [TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\geq \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} +\frac{9}{ab+bc+ca} [/TEX]
Ta có [TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} +\frac{9}{ab+bc+ca} =\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} +\frac{1}{ab+bc+ca}+ \frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca} [/TEX]

[TEX]\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} +\frac{1}{ab+bc+ca}+ \frac{1}{ab+bc+ca}\geq\frac{9}{(a+b+c)^2}=9 (1)[/TEX]
[TEX]\frac{7}{ab+bc+ca}\geq \frac{21}{(a+b+c)^2}=21 (2)[/TEX]
Từ (1) và (2) suy ra
[TEX]P\geq 30[/TEX]
dấu bằng xảy ra khi [TEX]a=b=c = \frac{1}{3}[/TEX]
 
Last edited by a moderator:
H

haibara4869

Ta có:
[TEX]S= \frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+2. (\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca})[/TEX]
\Rightarrow [TEX]S \geq \frac{16}{(a+b+c)^2+ab+bc+ca}+\frac{2}{3}.\frac{9}{ab+bc+ca}[/TEX]
Lại có:
[TEX]ab+bc+ca \leq \frac{(a+b+c)^3}{3} \leq \frac{1}{3}[/TEX]
\Rightarrow [TEX]S \geq\frac{16}{1+\frac{1}{3}}+\frac{2.9}{3.\frac{1}{3}} = 30[/TEX]
Dấu [TEX]"="[/TEX] xảy ra khi [TEX]a=b=c=\frac{1}{3}[/TEX]


P.S: Nhớ thanks với nha
 
Top Bottom